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This deliverable reports on the machine translation systems developed in the EASIER project.
Our earlier deliverable (D4.2) reported on the first version of the translation systems, the current
deliverable describes the final systems that are delivered.

The deliverable firstly gives an overview of the parallel corpora curated by EASIER that serve
as the training and evaluation data for machine translation. Secondly, we report on experiments
on sign language machine translation on five language pairs, with conclusions and recommen-
dations about which exact system and procedure perform best. The best-performing systems
are then delivered for use in EASIER and for the general public.

Finally, we also describe experiments on spoken language machine translation, focusing specif-
ically on gender bias considerations.

* Xk
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1 INTRODUCTION

This deliverable reports on machine translation (MT) research conducted in the EASIER project.
The overall goal of this research is to improve the quality of automatic sign language translation
technology. More specifically, the purpose of our experiments was to demonstrate which exact
techniques lead to the best translation quality and should therefore be used in a production sys-
tem. Overall we conducted a series of comparative experiments, comparing many ways of com-
bining datasets, existing and entirely novel technologies. The experiments cover five language
pairs: (British Sign Language (BSL)<«English (EN), German Sign Language (DGS)«+>German
(DE), Swiss-German Sign Language (DSGS)«»DE, Italian Sign Language (LIS)«Italian (IT)
and French Sign Language (LSF)<«+French (FR)).

All our efforts involving sign language are detailed in Chapter 2. We pursued fundamentally
different approaches depending on the translation direction, that is why spoken-to-signed and
signed-to-spoken translation are reported on in separate chapters. For signed-to-spoken trans-
lation systems (described in Section 2.1), our focus is on determining the best representation
for sign language data to be used in a translation system. For spoken-to-signed translation
(described in Section 2.2), our focus is to establish the first publicly available baseline systems,
together with the first open-source implementations.

For some spoken-to-signed systems that generate sign language utterances as an output, we
also report on a preliminary human evaluation.

Finally, we conducted experiments on spoken-to-spoken machine translation to complement
our sign language experiments (described in Chapter 3), focusing on making conventional spo-
ken language MT available for EASIER and experiments on gender bias.

© 2023 EASIER Consortium Page 9 of 53 Funded by the Horizon 2020 {'**}
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2 SIGN LANGUAGE TRANSLATION (TASK T4.2)

We report separately on signed-to-spoken translation (Section 2.1) and spoken-to-signed trans-
lation (Section 2.2). This is because our technical approach is different for each translation
direction.

2.1 SIGNED-TO-SPOKEN TRANSLATION

Overall, our goal for signed-to-spoken systems is translating from a signed input video to a
spoken output text, by any means that are technically feasible. We are agnostic to the exact
technologies used, as long as the entire process is fully automatic — this is reflected in our
experiments which are comparisons of many different approaches (Section 2.1.1).

For the experiments we rely on broadcast data collected and curated by EASIER partners
(Section 2.1.2). The technology we have developed is entirely novel in many cases. Since the
training of such systems is not tried-and-tested, we began a series of exploratory experiments
on the DSGS-DE language pair (Section 2.1.3). These preliminary experiments inform the
exact parameters and decisions for the main experiments on five language pairs (Section 2.1.4).

The code to reproduce all of our experiments is publicly available here: https://github.com/
ZurichNLP/easier-continuous-translation.

2.1.1 Overview of technical approaches

Existing translation systems for signed-to-spoken translation can be broadly categorized by
how sign language is represented in each system. Well-known paradigms (illustrated in Figure
2.2) are the following:

» Gloss translation systems: Sign language data is represented as glosses, which are
semantic labels borrowed from a related spoken language, often one gloss for each in-
dividual sign. Representing sign language as glosses reduces the machine translation
problem to a conventional text-to-text translation problem and therefore, all previous re-
search in machine translation can be applied most readily. However, glosses as a repre-
sentation have distinct shortcomings, and few resources have gloss annotations (Muller
et al., 2023).

» Pose translation systems: Sign language data is represented as a graph of body key-
points in 2-dimensional or 3-dimensional space. Extracting such keypoints, pose esti-
mation, is a fully automatic process, well-known pose estimation systems are OpenPose
(Cao et al., 2021)" and MediaPipe Holistic (Lugaresi et al., 2019)?. The exact set of key-
points depends on the pose estimation system. Poses are more lightweight than original
video frames, more tailored towards the task at hand (since they focus on movement,

Thttps: //github.com/CMU-Perceptual-Computing-Lab/openpose
2https://ai.googleblog.com/2020/12/mediapipe-holistic-simultaneous-face.html

* XK
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Figure 2.1: Examples of the output of pose estimation systems overlaid over the original video
frames. Left: OpenPose, right: MediaPipe Holistic.

rather than other information in a video such as the background) and potentially more
anonymous than original videos. However, recent experiments have shown that pose
information does not represent sign language as well as more generic video feature ex-
tractors (Moryossef et al., 2021a; Mdller et al., 2022; Tarrés et al., 2023).

* Numerical feature extraction: Finally, translation systems can encode (on the input
side) or generate (on the output side) sign language represented as arbitrary numerical
data that implicitly encodes meaning. In the context of machine learning and Natural Lan-
guage Processing (NLP), such numerical representations are often called embeddings or
learned features. The most well-known mechanism to extract such features is to train a
Convolutional Neural Network (CNN) to solve a preliminary task (other than the translation
task) such as single-sign recognition in videos with continuous signing. As a by-product
of learning to solve this preliminary task, the CNN will learn to transform high-dimensional
input videos into a smaller numerical representation.

EMSL representations Besides the standard ways of representing sign language data ex-
plained above, EASIER also developed custom representations called the European Meta Sign
Language (EMSL). EMSL is explained in more detail in Deliverable 3.3 and Deliverable 3.4.
Here we explain only what is necessary for the purpose of this deliverable.

There are two major versions of EMSL, referred to as V1.0 and V2.0. The fundamental differ-
ence between them is that EMSL V1.0 is a numerical representation of sign language, while
EMSL V2.0 is a gloss-based representation, consisting of text strings. See Figure 2.3 for a
high-level comparison. There are further, minor variants of each major EMSL version. More
specifically,

+ EMSL v1.0a: a latent representation obtained by contrastive learning. Now discontinued
and not used for our translation experiments.

« EMSL v1.0b: a numerical, intermediate output from learning a continuous sign language
recognition (or spotting) task. The general approach is to use as a starting point a 3D-

* XK
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gloss

pose

numerical

KINDER FREUEN
WARUM FERIEN
NAHER-KOMMEN

Die Kinder freuen sich, weil die Ferien naher kommen.

[1.7,-0.5, 2.6, 7.3,
9.0,0.2,-35,..]

A

<

Die Kinder freuen sich, weil die Ferien ndher kommen.

Die Kinder freuen sich, weil die Ferien nadher kommen.

Figure 2.2: Types of sign language translation systems, exemplified with an example in Swiss
German Sign Language (DSGS, left) and German (right). The main differences
between system types is how sign language is represented. The illustration shows
double arrows to indicate that in principle, is possible translation in both directions.

EMSL v1

EMSLv2

[17,-0.5,286,73,

9.0,0.2,-35,..]

Die Kinder freuen sich, weil die Ferien ndher kommen.

KINDER FERIEN

Die Kinder freuen sich, weil die Ferien naher kommen.

Figure 2.3: Comparison of systems based on EMSL versions 1.0 and 2.0. A fundamental dif-
ference between them is that EMSL V1.0 is a numerical representation of sign lan-
guage, while EMSL V2.0 is a gloss-based representation, consisting of text strings.
This figure is an extension of the basic system types introduced in Figure 2.2.

© 2023 EASIER Consortium
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feature N7, -0526,73 | _—» “FERIEN"
extractor 9.0,02,-35,..]

© SGB-F55

Figure 2.4: Informal illustration of EMSL version 1.0b. A system is trained to recognize glosses
(sign classes) in continuous videos. In a first step, numerical features are extracted
from the original video, for instance with a CNN. For gloss recognition, the extracted
features are an intermediate output that is then used to predict actual glosses.
Once this model is trained, the intermediate extracted features are used as EMSL
v1.0b and the second step (of predicting classes) is omitted.

CNN model pre-trained for general action recognition (Carreira and Zisserman, 2017) and
fine-tune it on sign language data. See Figure 2.4.

« EMSL v2.0a: the final output of a gloss recognition (or spotting) system. The system
takes existing videos and subtitles as an input and generates a sequence of glosses as
an output. For all the spoken language words of an existing subtitle, the system predicts
where these words occur in the video. Since this approach relies on subtitles to constrain
the search space, it is a theoretical oracle experiment, and cannot be used in practice.
In practice, we assume that subtitles are not available while generating a new translation
with a trained translation system.

+ EMSL v2.0b: same as v2.0a except that the system predicts from the full set of all known
glosses (classes of signs), hence a more realistic and practical setting. EMSL v2.0b in
turn comes in different versions, depending on two important hyperparameters: what data
the spotter was trained on (Public DGS Corpus (Hanke et al., 2020) or BOBSL (Albanie
et al., 2021)) and a probability threshold for detecting glosses in the video. See Figure
2.5.

2.1.2 Data

Our translation systems use as training data the resources collected by EASIER partners in
an earlier phase of the project. The focus of that data collection effort was on news broadcast
material, harvested from the websites of public broadcasters in the respective countries. See
an overview of the available parallel data in Table 2.1. For BSL++EN, EASIER did not collect
data on its own and instead relies on data previously collected by Albanie et al. (2021). The
data collection and curation is described in more detail in Deliverable 4.1.

Sentence segmentation Subtitle units from news broadcast material do not necessarily cor-
respond to full sentences. Entire-sentence units are required for machine translation experi-
ments. We therefore used automatic sentence segmentation methods to re-distribute the text

* XK
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< +—>

KINDER FERIEN

Figure 2.5: Informal illustration of EMSL version 2.0b. A system is trained to recognize glosses
(sign classes) in continuous videos. At inference time, the model takes a video as
an input and predicts where in the video specific signs occur. The set of signs that
can be predicted depends on the data that this gloss recognition model was trained
on (DGS or BSL data).

language pair total duration in hours number of videos with subtitles available

BSL+EN 1462 -
DGS+«+DE 2171 1928
DSGS«+DE 4647 1928
LSF+~FR 918 798
LIS<IT 111 230

Table 2.1: News broadcast resources collected by EASIER in five language pairs. Table shows
the parallel corpora available after preprocessing. For BSL, the existing resource
BOBSL was used. Numbers are taken from Deliverable 4.1.

* * K
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Original subtitle After automatic segmentation
81 48
00:05:22,607 -> 00:05:24,687 00:05:22,607 -> 00:05:28,127
Die Jury war beeindruckt Die Jury war beeindruckt und begeistert

von dieser gehdrlosen Frau.
82
00:05:24,687 -> 00:05:28,127
und begeistert von dieser gehodrlosen

Frau.
. Exampe2z
Original subtitle After automatic segmentation

7 4

00:00:24,708 -> 00:00:27,268 00:00:24,708 -> 00:00:31,720

Die Invalidenversicherung Region Bern Die Invalidenversicherung Region Bern

startete startete dieses Pilotprojekt und will
herausfinden, ob man es zukiinftig

8 umsetzen kann.

00:00:27,268 -> 00:00:29,860

dieses Pilotprojekt und will 5

herausfinden, ob man es 00:00:31,720 -> 00:00:34,502
Es geht um die Umsetzung (...)

9

00:00:29,860 -> 00:00:33,460
zukiinftig umsetzen kann. Es geht um
die Umsetzung

Table 2.2: Examples of automatic sentence segmentation for German subtitles. The subtitles
are formatted as SRT, a common subtitle format.

of the original subtitles so that each subtitle corresponds to one well-formed sentence exactly.
This process is illustrated in Table 2.2.

Alignment shift A further peculiarity of news broadcast data is that the signing is mostly pro-
duced by live interpretation. Moreover, the subtitles are also produced live, or are pre-produced.
As a consequence, while both the subtitles and the signing are based on the original speech
(audio), due to the live subtitling and live interpreting scenario, a temporal offset between au-
dio and subtitles as well as audio and signing is inevitable. This offset or “alignment shift” is
visualized in Figure 2.6.

The presence of such alignment shifts means that essentially, all of our training data should
be regarded as comparable parallel corpora, with an uncertain correspondence between sign
language and spoken language utterances (Etchegoyhen and Gete, 2020). This means not
only is our training data not immediately useful for training MT systems, but also that such data
can hardly be used as evaluation data.

Manual alignment and evaluation data With the help of other EASIER partners we man-
ually corrected a fraction of all available broadcast resources, to use them as more reliable

© 2023 EASIER Consortium Page 15 of 53 Funded by the Horizon 2020 {'**}
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L A

Die Kinder freuen sich, weil die Ferien naher riicken.

time

Figure 2.6: /llustration of alignment shift in sign language corpora. From top to bottom: a
sign language video, an audio track with speech, a spoken language subtitle in
German. Information in these three modalities do not start and end at the same
time, adjusting their start and end times is referred to as alignment.

training data (most of the manually corrected data) or as evaluation data (one episode for each
language pair). At the time of writing such manual corrections were done as follows:

DSGS: 31 episodes were manually corrected as part of the WMT 2022 shared task on
sign language translation (Mdller et al., 2022)

LIS: 20 episodes were corrected by SWISS TXT

LSF: 20 episodes were corrected by Interpretis

(BSL: manually corrected data already existed and was produced by Albanie et al. (2021),
independent of EASIER)

Currently, no human-corrected training or evaluation data exists for DGS. Overall, for our ex-
periments, we adopt the convention of referring to our original, un-aligned training data as
comparable data and the manually corrected data as parallel data.

2.1.3 Preliminary experiments with DSGS data

We ran preliminary experiments with DSGS—DE, as this was the first language pair where
larger-scale news data and a stable benchmark were available to us. We explored different
system types, ways of combining training data and different training techniques.

* * K
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Figure 2.7: Statistics of alignment shift on the SRF news broadcast data that was corrected
manually. start_offset=difference in seconds that a manual annotator has shifted
the beginning of a subtitle, end_offset=difference in seconds that a manual anno-
tator has shifted the end of a subtitle. Negative values mean that subtitle times
were shifted to a later time during manual correction. Red line shows the median
offsets.

2.1.3.1 Analysis and prediction of alignment shift

Analysis of manually aligned data Since our training data exhibits considerable alignment
shift (see Section 2.1.2), we analyzed the DSGS data that was manually corrected to investigate
whether the shift can be undone with a simple, statistical method. Figure 2.7 summarizes by
how much subtitle times were shifted by our manual annotators during correction. Our analysis
shows that the distribution is likely too wide to be captured by a single offset value like a median.
This observation is in line with what was observed earlier by Albanie et al. (2021) on the BOBSL
data that was manually aligned, and also confirmed empirically by our experiments in Table 2.4
(explained below).

Offset prediction Given that simply adding or subtracting a median offset value is not fea-
sible, we made several attempts to learn an offset prediction model, ranging from a simple
regression model which does not take into account the subtitle text to a pre-trained Transformer
to encode the subtitle text and a regression head to predict the offset. In the end, all of these
attempts were unsuccessful, since none of these prediction methods outperformed the median
predictor.

2.1.3.2 Machine translation experiments

We now turn to preliminary machine translation experiments on the DSGS+« DE training data.
Overall, we explore different ways of putting together training data (e.g. only the parallel data,
or also adding the comparable data), and different representations for sign language (pose
estimation variants, EMSL variants).

Core model For all experiments we use Sockeye (Hieber et al., 2022) as the underlying
sequence-to-sequence toolkit, which is based on Pytorch (Paszke et al., 2019). For numerical
representations of sign language (see Section 2.1.1) we adapted Sockeye so that it supports

© 2023 EASIER Consortium Page 17 of 53 Funded by the Horizon 2020 [RERNRE
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BLEU BLEU+case.mixed+numrefs.l+smooth.exp+tok.13a+version.1.4.14

CHRF  chrF2+numchars.6+space.false+version.1.4.14

Table 2.3: SacreBLEU signatures for evaluation metrics.

encoding or decoding continuous vectors instead of discrete sequences of tokens. Our imple-
mentation can read a sequence of feature vectors and convert them to the model size with a
simple learned projection. Apart from this modification, all models are standard Transformer
models (Vaswani et al., 2017).

Preprocessing The spoken language subtitles are segmented automatically (see Section
2.1.2). As an experiment variant, for our comparable training data, we shift all subtitle times
by the median offset taken from our statistical analysis (see Section 2.1.3.1). The subtitle text
is then segmented by a trained Sentencepiece model (Kudo, 2018) with a vocabulary size of
1000.

If pose estimation is used, we test different ways of normalizing pose data (standardizing, for
instance, the shoulder width of each frame). For pose or EMSL systems we test forcing a
common framerate for all continuous sequences.

Automatic evaluation We perform an automatic evaluation of translation quality. We mea-
sure translation quality with BLEU (Papineni et al., 2002) and CHRF (Popovi¢, 2016), computed
with the tool SacreBLEU (Post, 2018). Both metrics are widely used in MT research, and Sacre-
BLEU is the recommended tool to compute them. See Table 2.3 for all SacreBLEU signatures.
We note that many recent neural metrics, such as COMET (Rei et al., 2020), are not applicable
in our case because the source languages (sign languages) are not supported.

2.1.3.3 Results and conclusions

Exploration of EMSL v2.0b variants EMSL v2.0b exists in 12 different variants, depending
on what data the spotter was trained on (Public DGS Corpus or BOBSL) and a probability
threshold for detecting glosses in the video (see Section 2.1.1). We compare all of these
variants, and the outcome of these experiments are summarized in Figure 2.8.

We conclude from our experiments that using an I3D threshold of 0.5 leads to the highest
translation quality (as measured on the development set, not the test set). The exact 13D
model used (based on DGS or BSL glosses, or both combined) is less important as a hyperpa-
rameter, since there is no version which is clearly superior. In subsequent results we will show
only the one EMSL v2.0b system that achieved the best score on the development set.

Wider comparison of data scenarios and feature types All further experiments are sum-
marized in Table 2.4. In the results we refer to different representations of sign language as
feature types.
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Figure 2.8: Exploration of different variants of EMSL v2.0b. Numbers are CHRF scores com-
puted on the WMT-SLT22 development set. The 13D threshold and I3D model are
hyperparameters of EMSL v2.0b.

feature type training corpora Translation quality (CHRF)

parallel comparable apply offsets

(1) OpenPose v - 5.80
(2) Mediapipe v - 7.90
(3) EMSLv1.0b v - 14.00
(4) EMSLv2.0a* 4 - 17.00
(5) EMSL v2.0b 4 - - 13.00
(6) EMSL v2.0b v v - 15.60
(7) Mediapipe v v (10k) - 5.57
(8) Mediapipe v v (10k) v 4.45
(9) Mediapipe v v (50k) - 7.00
(10)  WMT-SLT22 winning system - - - 19.50

Table 2.4: Preliminary experiments on DSGS— DE, showing the translation quality of different
signed-to-spoken systems. All experiments are evaluated on the official test set of
the WMT-SLT22 shared task (Miller et al., 2022). The WMT-SLT22 winning sys-
tem is trained on different training data. parallel=EASIER news broadcast data that
was manually corrected (identical to SRF training corpus provided by WMT-SLT22),
comparable=larger EASIER news broadcast data with alignment shifts, apply off-
sets=shift subtitle times automatically by an empirical value resulting from an analy-
sis of the manually corrected parallel data, *=EMSL v2.0a is an oracle experiment

* XK
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Comparison of pose estimation systems (rows (1) and (2)) We observe that Mediapipe
poses usually outperform OpenPose poses as a representation for sign language. An
additional reason to prefer Mediapipe over OpenPose is that the former runs in real-time on
consumer devices, making it more likely that such a system could be used in a handheld appli-
cation. Regarding the learning procedure of the underlying neural network, we observe that for
both pose types, the learning trajectory is uncharacteristic for NMT models. For instance, the
perplexity on the training set does not continuously and smoothly decrease over the course of
learning. This may indicate that poses need more aggressive normalization.

Promising performance of EMSL v1.0b (rows (1) to (3)) EMSL v1.0b outperforms pose
translation systems by a large margin (a CHRF score of 14 versus 7). We conclude that EMSL
v1.0b is a promising representation for sign language machine translation, and more
accurate than pose estimation systems. This finding is in line with earlier research, with
most authors concluding that learned vision-based feature extractors outperform current pose
estimation systems (Moryossef et al., 2021a; Miiller et al., 2022; Tarrés et al., 2023). Finally, the
learning trajectory of EMSL v1.0b systems is closer to our expectations, adding to its potential
usefulness.

EMSL v2.0 variants worse than alternatives (rows (3) to (6)) While EMSL v2.0a outper-
forms v1.0b in terms of translation quality, it is an oracle experiment that has no practical ap-
plication, i.e. cannot be used in a real translation system. The performance of the best hy-
perparameter combinations for EMSL v2.0b is comparable to EMSL v1.0b. However, for v2.0b
considerable hyperparameter tuning was conducted, while no hyperparameter optimization was
done for v1.0b. All systems can be improved in similar ways with hyperparameter optimization.
In effect, this means that EMSL v1.0b is superior to all tested EMSL v2.0 variants.

Adding comparable training data (rows (7) to (9)) In this part of the experiments, we kept
the feature type constant, using Mediapipe in all cases. We varied the exact composition of the
training data. Our results show that naively combining our hand-corrected, parallel data
with comparable data (from our larger pool of data containing alignment shifts) degrades
performance. This is the case even if a median offset is applied to the comparable subtitles.
We observe a slight trend that using more comparable data improves translation quality, while
still underperforming a system that is trained on parallel data only. A crucial conclusion we draw
is that a pre-training (on comparable data) and fine-tuning (on parallel data) scheme is
necessary.

Miscellanous findings (not represented in the table) We also established that pose nor-
malization is necessary and that forcing a common framerate (independent of the feature type)
improves the translation quality. Finally, none of our systems was able to outperform the win-
ning system of the WMT 2022 shared task on sign language translation, pointing to the fact that
our preprocessing, core implementation or training procedures still have room for improvement.
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parallel
OpenPose Mediapipe EMSL v1.0b EMSL v2.0b
DGS BSL DGS BSL BOTH
BSL+~EN 32563 32563 - 32029 - 8276 -
DGS«+DE - - - - - - -
DSGS«+DE 6855 6855 6855 6855 6993 6975 7019
LSF«~FR 3422 3422 3422 3422 3594 3604 3618
LIS&IT 3526 3526 3526 3526 3656 3648 3685
comparable
OpenPose Mediapipe EMSL v1.0b EMSL v2.0b
DGS BSL DGS BSL BOTH
BSL+EN 1191039 1191039 - 1176385 - 799873 -
DGS«DE 963073 963073 51316 51316 - - -
DSGS«+DE 560304 560304 21819 21819 12705 12650 12837
LSF+~FR 256508 256508 23399 256508 22701 242390 23096
LIS&IT 45015 45015 18296 18296 18384 18326 18531

Table 2.5: Training data effectively available for all language pairs. This table shows the number
of parallel pairs of spoken language sentence, signed utterance, the statistic that is
most immediately useful for sentence-level machine translation experiments.

2.1.4 Main experiments on five language pairs

If not noted otherwise, all preprocessing, model and training settings are identical to our pre-
liminary experiments (see Section 2.1.3).

We do not have full coverage of all datasets for all feature types and all language pairs. Besides
partial coverage, we exclude training examples for reasons such as corrupted video files, subti-
tle annotations that do not match, framerate issues and so on. As a consequence, our effective
available training data is less than suggested in the overall numbers from our data collection.
Table 2.5 shows the number of parallel training examples (on sentence level) that are available
in reality.

The main results on the full set of five language pairs are shown in Table 2.6. While our main
results show CHRF scores, an additional table with BLEU scores is included in Appendix 5.3.

Systems trained on parallel data The performance of systems trained only on manually
corrected, parallel data confirms the trends we have observed in our preliminary experiments
(Section 2.1.3). EMSL v1.0b, a continuous, numerical feature type, outperforms pose estimates
and leads to considerably higher translation quality. The exact variant of EMSL v1.0b (EMSL
feature extractor trained on DGS or BSL data) does not make a difference empirically, as the
results are comparable.
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DSGS—DE LSF—FR LIS—IT BSL—EN DGS—DE

(pre)trained on  finetuned on

Mediapipe parallel - 4.690 8.320 4.570 4.990
EMSL v1.0b DGS parallel - 15.460 13.910 13.140 -
EMSL v1.0b BSL parallel - 15.370 12.370 13.630 12.050
EMSL v2.0b DGS parallel - 11.536 9.271 13.185
both - 13.306 11.597 11.521 -
EMSL v2.0b BSL parallel - 13.340 11.240 14.987 10.571
both - 13.384 14.526 18.066 20.261
EMSL v2.0b BOTH  parallel - 12.456 9.725 14.634 -
both - 14.926 14.053 16.142
Mediapipe comparable - 8.160 6.210 4.710 5.700 5.570
EMSL v1.0b DGS comparable - 14.290 13.120 14.580 - 15.620
EMSL v1.0b BSL comparable - 14.680 11.260 15.110 12.630 15.430
Mediapipe comparable parallel 6.000 4.670 4.590 5.210
EMSL v1.0b DGS comparable parallel 14.900 11.780 14.590 -
EMSL v1.0b BSL comparable parallel 15.340 11.250 14.380 11.440

Table 2.6: Translation quality measured by CHRF on the EASIER manually corrected test data.
Best scores are highlighted in bold. For BSL«+EN, EMSL v1.0b DGS does not exist,
hence no model was trained. Similarly, parallel data does not exist for DGS«+ DE,
and no such model was trained

Systems pretrained on comparable data A further set of systems is trained on comparable
data that is potentially of lower quality, but more abundant. Because different amounts of usable
comparable data exist, depending on the feature type and language pair (see Table 2.5), we
use up to 50000 parallel samples for each system. We trained these systems with the intention
of further finetuning them on the parallel data (see below), but they can also be evaluated on
their own. When using EMSL v1.0b as the feature type, pretraining on the comparable data
alone already leads to translation quality comparable to training on the parallel data.

Final recommendations Learned, continuous representations require less attention to hy-
perparameter settings and achieve comparable results to the discrete sequences in EMSL
v2.0b. Both types of EMSL representations are clearly superior for translation quality than sim-
ple pose estimation. Instead of naively combining datasets of varying quality, a more elaborate
pre-training and fine-tuning scheme can further improve translation quality. In general, training
on more data, even if noisy, is beneficial compared to training only on the very limited amount
of high quality data.

2.2 SPOKEN-TO-SIGNED TRANSLATION

The research in this section was published as Moryossef et al. (2023). The text was adapted
to fit into the context of this deliverable. Our software is publicly available®.

Shttps://github.com/ZurichNLP/spoken-to-signed-translation
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2.2.1 Introduction

One of the critical issues in this field is the lack of a reproducible and reliable baseline for sign
language translation systems. Without a baseline, it is challenging to measure the progress
and effectiveness of new methods and systems. Additionally, the absence of such a baseline
makes it difficult for new researchers to enter the field, hampers comparative evaluation, and
discourages innovation.

Addressing this gap, this work presents an open-source implementation of a text-to-gloss-to-
pose-to-video pipeline approach for sign language translation, extending the work of Stoll et
al. (Stoll et al., 2018; Stoll et al., 2020). Our main contribution is the development of an open-
source, reproducible baseline that can aid in making sign language translation systems more
available and accessible, particularly in resource-limited settings. This open-source approach
allows the community to identify issues, work together on improving these systems, and facili-
tates research into novel techniques and strategies for sign language translation.

Our approach involves three alternatives for text-to-gloss translation, including a lemmatizer,
a rule-based word reordering and dropping component, and a neural machine translation
(NMT) system. For gloss-to-pose conversion, we use lexicon-acquired data for three signed
languages, including Swiss German Sign Language (DSGS), Swiss French Sign Language
(LSF-CH), and Swiss ltalian Sign Language (LIS-CH). We extract skeletal poses using Medi-
apipe and apply a series of improvements to the poses, including cropping, concatenation, and
smoothing, before applying a smoothing filter.

2.2.2 Background

Sign language translation can be accomplished in various ways. In this section, we focus on
the pipeline approach that involves text-to-gloss, gloss-to-pose, and, optionally, pose-to-video
techniques. The text-to-gloss technique translates spoken language text into sign language
glosses, which are then converted into a sequence of poses by gloss-to-pose techniques, and
into a photorealistic video using pose-to-video techniques.

This pipeline offers the benefit of preserving the content of the sentence, while exhibiting a
tendency for verbosity and a lower degree of fluency. In this section, we explore each of the
pipeline components comprehensively and examine recent progress in sign language transla-
tion utilizing these methods.

2.2.2.1 Text-to-Gloss

Text-to-gloss, an instantiation of sign language translation, is the task of translating between a
spoken language text and sign language glosses. It is an appealing area of research because
of its simplicity for integrating in existing NMT pipelines, despite recent works such as Yin and
Read (2020) and Mdller et al. (2023) claiming that glosses are an inefficient representation
of sign language, and that glosses are not a complete representation of signs (Pizzuto et al.,
2006).

Zhao et al. (2000) used a Tree Adjoining Grammar (TAG)-based system to translate English
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sentences to American Sign Language (ASL) gloss sequences. They parsed the English text
and simultaneously assembled an ASL gloss tree, using Synchronous TAGs (S. M. Shieber and
Schabes, 1990; S. Shieber, 1994), by associating the ASL elementary trees with the English el-
ementary trees and associating the nodes at which subsequent substitutions or adjunctions can
occur. Synchronous TAGs have been used for machine translation between spoken languages
(Abeillé et al., 1991), but this was the first application to a signed language.

Othman and Jemni (2012) identified the need for a large parallel sign language gloss and
spoken language text corpus. They developed a part-of-speech-based grammar to transform
English sentences from the Gutenberg Project ebooks collection (Lebert, 2008) into American
Sign Language gloss. Their final corpus contains over 100 million synthetic sentences and 800
million words and is the most extensive English-ASL gloss corpus we know of. Unfortunately,
it is hard to attest to the quality of the corpus, as the authors did not evaluate their method on
real English-ASL gloss pairs.

Egea Gomez et al. (2021) presented a syntax-aware transformer for this task, by injecting word
dependency tags to augment the embeddings inputted to the encoder. This involves minor
modifications in the neural architecture leading to negligible impact on computational complexity
of the model. Testing their model on the RWTH-PHOENIX-Weather-2014T (Camgéz et al.,
2018), they demonstrated that injecting this additional information results in better translation
quality.

2.2.2.2 Gloss-to-Pose

Gloss-to-pose, subsumed under the task of sign language production, is the task of producing
a sequence of poses that adequately represent a sequence of signs written as gloss.

To produce a sign language video, Stoll et al. (2018) construct a lookup table between glosses
and sequences of 2D poses. They align all pose sequences at the neck joint of a reference
skeleton and group all sequences belonging to the same gloss. Then, for each group, they
apply dynamic time warping and average out all sequences in the group to construct the mean
pose sequence. This approach suffers from not having an accurate set of poses aligned to the
gloss and from unnatural motion transitions between glosses.

To alleviate the downsides of the previous work, Stoll et al. (2020) construct a lookup table of
gloss to a group of sequences of poses rather than creating a mean pose sequence. They build
a Motion Graph (Min and Chai, 2012), which is a Markov process used to generate new motion
sequences that are representative of natural motion, and select the motion primitives (sequence
of poses) per gloss with the highest transition probability. To smooth that sequence and reduce
unnatural motion, they use a Savitzky—Golay motion transition smoothing filter (Savitzky and
Golay, 1964).

2.2.2.3 Pose-to-Video

Pose-to-video, also known as motion transfer or skeletal animation in the field of robotics and
animation, is the conversion of a sequence of poses to a video. This task is the final “rendering”
of sign language in a visual modality.
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Chan et al. (2019) demonstrated a semi-supervised approach where they took a set of videos,
ran pose estimation with OpenPose (Cao et al., 2021), and learned an image-to-image trans-
lation (Isola et al., 2017) between the rendered skeleton and the original video. They demon-
strated their approach on human dancing, where they could extract poses from a choreography
and render any person as if they were dancing. They predicted two consecutive frames for
temporally coherent video results and introduced a separate pipeline for a more realistic face
synthesis, although still flawed.

Wang et al. (2018) suggested a similar method using DensePose (Guler et al., 2018) repre-
sentations in addition to the OpenPose (Cao et al., 2021) ones. They formalized a different
model, with various objectives to optimize for, such as background-foreground separation and
temporal coherence by using the previous two timestamps in the input.

Using the method of Chan et al. (2019) on “Everybody Dance Now”, Ventura et al. (2020)
asked, “Can Everybody Sign Now?” and investigated if people could understand sign language
from automatically generated videos. They conducted a study in which participants watched
three types of videos: the original signing videos, videos showing only poses (skeletons), and
reconstructed videos with realistic signing. The researchers evaluated the participants’ under-
standing after watching each type of video. The results of the study revealed that participants
preferred the reconstructed videos over the skeleton videos. However, the standard video syn-
thesis methods used in the study were not effective enough for clear sign language translation.
Participants had trouble understanding the reconstructed videos, suggesting that improvements
are needed for better sign language translation in the future.

As a direct response, Saunders et al. (2020) showed that like in Chan et al. (2019), where an ad-
versarial loss was added to specifically generate the face, adding a similar loss to the hand gen-
eration process yielded high-resolution, more photo-realistic continuous sign language videos.
To further improve the hand image synthesis quality, they introduced a keypoint-based loss
function to avoid issues caused by motion blur.

In a follow-up paper, Saunders et al. (2021) introduced the task of Sign Language Video
Anonymisation (SLVA) as an automatic method to anonymize the visual appearance of a sign
language video while retaining the original sign language content. Using a conditional varia-
tional autoencoder framework, they first extracted pose information from the source video to
remove the original signer appearance, then generated a photo-realistic sign language video
of a novel appearance from the pose sequence. The authors proposed a novel style loss that
ensures style consistency in the anonymized sign language videos.

2.2.3 Method

In this section, we provide an overview of our text-to-gloss-to-pose-to-video pipeline, detail-
ing the components and how they work together to convert input spoken language text into a
sign language video. The pipeline consists of three main components: text-to-gloss transla-
tion, gloss-to-pose conversion, and pose-to-video animation. For text-to-gloss translation, we
provide three different alternatives: a lemmatizer, a rule-based word reordering and dropping
component, and a neural machine translation system. Figure 2.9 illustrates the entire pipeline
and its components.
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Figure 2.9: Pipeline of the proposed text-to-gloss-to-pose-to-video approach for sign language
translation. Starting with a German sentence, the system applies text-to-gloss
translation, for example, using a rule-based word reordering and dropping com-
ponent. The resulting gloss sequence is used to search for relevant videos from
a lexicon of Swiss German Sign Language (DSGS). The poses of each relevant
video are then extracted and concatenated in the gloss-to-pose step to create a
pose sequence for the sentence, which is then transformed back to a (synthesized)
video using the pose-to-video model. The figure demonstrates the transformation
of the sentence “Suchen Sie eine Arztin auf, wenn Sie Auskiinfte oder Hilfe bendti-
gen.” (‘Seek out a doctor if you need information or assistance.’) to a sequence of
glosses, the search for relevant videos for each gloss, the concatenation of pose
videos, and the final video output.
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2.2.3.1 Pipeline

Below, we describe the high-level structure of our pipeline, including the text-to-gloss transla-
tion, gloss-to-pose conversion, and pose-to-video animation components:

1. Text-to-Gloss Translation: The input (spoken language) text is first processed by the
text-to-gloss translation component, which converts it into a sequence of glosses.

2. Gloss-to-Pose Conversion: The sequence of glosses generated from the previous step
is then used to search for relevant videos from a lexicon of signed languages (e.g., DSGS,
LSF-CH, LIS-CH). We extract the skeletal poses from the relevant videos using a state-
of-the-art pre-trained pose estimation framework. These poses are then cropped, con-
catenated, and smoothed, creating a pose representation for the input sentence.

3. Pose-to-Video Generation: The processed pose video is transformed back into a syn-
thesized video using an image translation model, based on a custom training of Pix2Pix.

We note that while the pose-to-video generation is part of our pipeline, it will not be used in
EASIER systems.

2.2.3.2 Implementation Details

Our system accepts spoken language text as input and outputs an .mp4 video file, or a binary
.pose file, which can be handled by the pose-format library (Moryossef and Mdller, 2021) in
Python and JavaScript. The .pose file represents the sign language pose sequence generated
from the input text. To make our system easy to use, we deploy it as an HTTP endpoint that
receives text as input and outputs the .pose file. We provide a demonstration of our system
using https://sign.mt, with support for the three signed languages of Switzerland.

We implement our pipeline using Python and package it using Flask, a lightweight web frame-
work. This allows us to create an HTTP endpoint for our application, making it easy to integrate
with other systems and web applications. Our system is deployed on a Google Cloud Plat-
form (GCP) server, providing scalability and easy access. Furthermore, we release the source
code of our implementation as open-source software, allowing others to build upon our work
and contribute to improving the accessibility of sign language translation systems.

By implementing our system as an open-source Python application and deploying itas an HTTP
endpoint, we aim to facilitate collaboration and improvements to sign language translation sys-
tems.

2.2.4 Text-to-Gloss

We explore three different components as part of text-to-gloss translation, including a lemma-
tizer (Section 2.2.4.1), a rule-based word reordering and dropping component (Section 2.2.4.2),
and a neural machine translation (NMT) system (Section 2.2.4.3).

* XK
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2.2.4.1 Lemmatizer

We use the Simplemma simple multilingual lemmatizer for Python (Barbaresi, 2023). The lem-
matizer reduces words to their base form (i.e., lemma), which is useful for our case, as it helps
to preserve meaning while reducing the complexity of the input. This approach is limited by
the use of the simplistic context-free lemmatizer, since no sense information is captured in the
lemma, which causes ambiguity.

2.2.4.2 Word Reordering and Dropping

We generate near-glosses for sign language from spoken language text using a rule-based
approach. The process from converting spoken language sentences into sign language gloss
sequences can be naively summarized by a removal of word inflection, an omission of punc-
tuation and specific words, and word reordering. To address these differences, we adopt the
rule-based approach from Moryossef et al. (2021b) to generate near-glosses from spoken lan-
guage: lemmatization of spoken words, PoS-dependent word deletion, and word order permu-
tation. With their permission, we re-share these rules:

Specifically, we use spaCy (Montani et al., 2023) for lemmatization, PoS tagging and depen-
dency parsing. Unlike Simplelemma, the spaCy lemmatizer is language specific and context
based. We drop words that are not content words (e.g., articles, prepositions), as they are
largely unused in signed languages, but keep possessive and personal pronouns as well as
nouns, verbs, adjectives, adverbs, and numerals. We devise a short list of syntax transforma-
tion rules based on the grammar of the sign language and the corresponding spoken language.
We identify the subject, verb, and object in the input text and reorder them to match the order
used in the signed language. For example, for German-to-DGS, we reorder SVO sentences to
SOV, move verb modifying adverbs and location words to the start of the sentence (a form of
topicalization), move negation words to the end.

The specific rules we use for German to DGS/DSGS are:

1. For each subject-verb-object triplet (s, v, 0) € S, swap the positions of v and o in S
Keep all tokens ¢t € S if PoS(t) € {noun, verb, adjective, adverb, numeral, pronoun}
If PoS(¢) = adverb and HEAD(t) = verb, move ¢ to the start of S

If NER(¢) = location, move ¢ to the start of S

If DEP(¢) = negation, move ¢ to the end of S

o o &~ w N

Lemmatize all tokenst € S

We first split each sentence into separate clauses and reorder them before we apply these
rules to each clause. Reordering the clauses may be needed for conditional sentences where
the conditional subordinate clause should precede the main clause, as in “if...then...”. These
rules allow us to transform spoken language text into near-glosses that more closely match
the word order and structure of sign language. Overall, our rule-based approach provides a
flexible and effective way to generate near-glosses for sign language from spoken language

© 2023 EASIER Consortium Page 28 of 53 Funded by the Horizon 2020 [

Framework Programme of the European Union *x K



(( @)) easier

text, with the ability to incorporate language-specific rules to capture the nuances of different
sign languages. This approach employs a more accurate lemmatizer, however, it still suffers
from word sense ambiguity.

2.2.4.3 Neural Machine Translation

As an alternative to rule-based transformations of text to glosses, we consider a neural machine
translation (NMT) system. We use an existing gloss translation system trained by EASIER and
described in our earlier WP4 Deliverable 4.2.

The particular system we use was trained on the Public DGS Corpus. The model is multilingual,
following the methodology described in Johnson et al. (2017) which inserts special tokens into
all source sentences to indicate the desired target language. Therefore, the model can translate
from German text to DGS glosses and vice versa. Our automatic evaluation in Deliverable
4.2 confirmed that one multilingual system leads to higher translation quality than individual
bilingual systems.

2.2.4.4 Language-Dependent Implementation

In this work, we study three sign languages: LIS-CH, LSF-CH and DSGS. For LIS-CH and
LSF-CH we always apply our simple lemmatizer (Section 2.2.4.1) for the text-to-gloss step.
The lemmatizer-only component is universally applicable to many more languages. However, it
is worth noting that this approach does not capture the full spectrum of syntactic and morpho-
logical changes necessary in going from a spoken language to a sign language, which likely
leads to suboptimal translations.

For DSGS, we explored different options for text-to-gloss, comparing the lemmatizer (Section
2.2.4.1), rule-based system (Section 2.2.4.2) and NMT system (Section 2.2.4.3). We observed
that the glosses output by the NMT system are less accurate than rule-based reordering. A
potential explanation for this is that the system is trained on German Sign Language (DGS)
data. Due to the inherent differences between DGS and DSGS, using the NMT system could
result in inaccurate translations or out-of-lexicon glosses. Furthermore, we found that the NMT
system is not robust to out-of-domain text or capitalization differences, which further limits its
applicability in these scenarios.

In the end, for DSGS we opted to employ our rule-based system (Section 2.2.4.2), which has
been tailored to accommodate the unique linguistic characteristics of DSGS, and produces the
best results.

2.2.5 Gloss-to-Pose

Gloss-to-pose translation involves converting sign language glosses into a sequence of poses
that adequately represent a sequence of signs.

We use the SignSuisse dataset (Schweizerischer Gehdrlosenbund SGB-FSS, 2023), which
consists of sign language videos in three different languages. We extract skeletal poses from
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these videos using Mediapipe Holistic (Grishchenko and Bazarevsky, 2020), a state-of-the-art
pose estimation framework that estimates 3D coordinates of various landmarks on the human
body, including the face, hands, and body. We preprocess the poses by ensuring that the body
wrists are in the same location as the hand wrists, removing the legs, hands, and face from the
body pose, and cropping the videos in the beginning and end to avoid returning to a neutral
body position.

We concatenate the poses for each gloss by finding the best ‘stitching’ point that minimizes
L2 distance. We then concatenate these poses, adding 0.2 seconds of ‘padding’ in between,
before applying cubic smoothing on each joint to ensure smooth transitions between signs, and
filling in missing keypoints. Finally, we apply a Savitzky-Golay motion transition smoothing filter
(Savitzky and Golay, 1964), similar to Stoll et al. (2020), to reduce unnatural motion.

2.2.6 Pose-to-Video

We use a semi-realistic human-like avatar system to animate the poses generated by our ap-
proach. The avatar system is a Pix2Pix model (Isola et al., 2017) adjusted to operate on pose
sequences, not individual images. With her permission, we use the likeness of Maayan Gazuli*.
We use OpenCV (Bradski, 2000) to render the poses as images and feed them into the Pix2Pix
model to generate realistic-looking video frames. The avatar system can run in real-time on
supported devices and is integrated into https://sign.mt (Moryossef, 2023). This system is
far from the state of the art, however, we believe that the open-source nature of it will bring
rapid improvements, like faster inference speed, and higher animation quality.

2.2.7 Conclusions

We presented an implementation of a text-to-gloss-to-pose-to-video pipeline for sign language
translation, focusing on Swiss German Sign Language, Swiss French Sign Language, and
Swiss ltalian Sign Language. Our approach comprises three main components: text-to-gloss
translation, gloss-to-pose conversion, and pose-to-video animation.

We explained the structure of our system and discussed its limitations, as well as future work
directions to address them. These directions have the potential to improve our system, and we
look forward to exploring them in collaboration with the open-source community.

The main contribution of this work is the creation of a reproducible baseline for spoken to
signed language translation. The system should serve as a baseline for comparison with more
sophisticated sign language translation systems and can be improved upon by the community.
Our systems for the three signed languages of Switzerland are available on https://sign.mt.

2.2.8 Future Work

Here we include several future work directions that we believe have the potential to further
enhance the performance and user experience of our system for text-to-gloss-to-pose-to-video

“https://nlp.biu.ac.il/~amit/datasets/GreenScreen/
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generation, and we look forward to exploring these possibilities in the future, together with the
open-source community.

Qualitative Evaluation To evaluate the effectiveness of our approach, we will conduct a study
to gather first impressions from deaf users. We already recruited a group of deaf individuals
and will ask them to use our system to translate text into sign language videos.

Each participant will be asked to provide feedback on the system after using it to translate five
different sentences from German into DSGS. We will provide the sentences to the participants,
and they will be asked to sign the translations generated by our system. After each sentence,
the participant will be asked to provide feedback on the accuracy of the translation, the quality
of the poses and/or synthesized video, and the overall usability of the system.

Gloss Sense Disambiguation The current approach to text-to-gloss translation relies on a
simple lemmatizer and a rule-based word reordering and dropping component, which can lead
to ambiguity in the glosses produced. In the future, we can enhance our system by incorporat-
ing gloss sense disambiguation to better capture the intended meaning of the input text. Our
NMT approach responds with gloss IDs from the MeineDGS corpus, which already are sense-
disambiguated. Annotation of our sign language lexicon with senses will allow us to retrieve the
relevant sense.

Handling Unknown Glosses Where we encounter a gloss that does not exist in our lexicon,
we propose exploring alternative methods to generate a video for it. One possible solution is
to leverage another lexicon that includes a written representation of the gloss in question (e.g.,
SignWriting (Sutton, 1990) or HamNoSys (Prillwitz and Zienert, 1990)), or to employ a neural
machine translation system to translate the individual concept to a writing system. Utilizing the
capabilities of machine translation to embed words, we can perform a fuzzy match, addressing
issues such as synonyms.

Additionally, for named entities such as proper nouns and place names that are not covered by
our current gloss-to-pose conversion system, we could revert to fingerspelling them.

Once we have the written representation, we can use a system like Ham2Pose (Shalev-Arkushin
et al., 2023) to generate a single sign video from the writing. When combined with fingerspelling
for named entities, this approach should enable greater coverage of the language.

Handling Unknown Gloss Variations In situations where the required gloss variation is not
present in the lexicon but a related gloss exists, we propose developing a system that can
modify the known gloss to generate the desired variation. This would allow for better handling
of unknown gloss variations and increase the accuracy of the information conveyed by the
signing.

Number Forms For words like KINDER (children), we may encounter glosses such as KIND+,
which represent “child" in plural form. Assuming that we have KIND in our lexicon but not
KINDER, a system could be developed to modify signs to plural forms, such as by repeating
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movements or incorporating specific handshapes or locations that indicate plurality in the target
sign language. Conversely, if we only have the plural form of a gloss in our lexicon, the system
could be designed to generate the singular form by removing or modifying the elements that
indicate plurality.

Part-of-Speech Conversion Another challenge arises when nouns or verbs exist in the lexi-
con, but their counterparts do not. For instance, if HELFEN (to help) is present in the dictionary
as a verb, but HILFE (help) does not exist as a noun, a system could be designed to modify
signs from one part of speech to another, such as from verb to noun or noun to verb. This
system could potentially involve morphological or movement modifications, depending on the
linguistic rules of the target sign language.

Post-editing Pose Sequences The current approach generates a sequence of poses that
represent a sign language sentence. We believe that there is also room for improvement in
terms of the fluency and naturalness of the generated sequence. Exploring the use of automatic
post-editing techniques is necessary. One such approach could identify datasets that include
sentences and gloss sequences, such as the Public DGS Corpus, then, using our gloss-to-pose
approach generate a pose sequence with poses from the lexicon, and could learn a diffusion
model between the synthetic and real pose sequences.

2.2.9 Interface with Avatar in WP2

For the spoken-to-signed translation systems we developed, we envision that their output is fed
to an avatar system such as the one developed by WP2. There are several ways in which the
translation output can be visualized, including interfacing with an avatar.

» For all five language pairs, we offer a text-to-gloss component. Depending on the lan-
guage pair, the component is either a full-fledged translation system (for DE—DGS and
EN—BSL, described in Deliverable 4.2) or a simpler transformation based on lemma-
tization or rules (for DE—~DSGS, FR—LSF and IT—LIS, described in Section 2.2.4).
The glosses of this component can be represented by the EASIER avatar as developed
in WP2, after a look-up process in a Gloss-HamNoSys dictionary and incorporation of
prosodic information relevant to the translated text along with emotion features deriving
from WP7.

» For three language pairs we deliver a more comprehensive text-to-pose translation sys-
tem (for DE—DSGS, FR—LSF and IT—LIS, described in Sections 2.2.4 and 2.2.5).

Therefore, translation output visualization may be achieved either via an avatar system which
could take glosses as an input and provide 3D signed representations of the translations, or via
pose sequences displayed on 2D stick figures.
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source hypothesis hypothesis reference

source-based evaluation reference-based evaluation

Figure 2.10: Simplified illustration of direct assessment methods, widely used protocols for
human evaluations of machine translation systems. source=input to the transla-
tion system. hypothesis=output of the system. reference=human translation.

2.2.10 Interim evaluation

We conduct a preliminary evaluation of translation quality for some of the spoken-to-signed
translation systems described in this section. Specifically, we evaluate the language pairs
DE—DSGS and IT—LIS. For DE—DSGS, we evaluate two different text-to-gloss components
that are based on simple lemmatization or hand-written rules, respectively (see Section 2.2.4).
For IT—LIS we only evaluate simple lemmatization.

Section 2.2.10.1 outlines evaluation designs that are common in machine translation research,
and the exact design chosen for this interim evaluation. Section 2.2.10.2 summarizes the out-
come of the evaluation.

2.2.10.1 Human evaluation protocol

Below we outline considerations for a human evaluation of sign language machine translation,
as there is hardly any previous study to build upon.

Common evaluation protocols Human evaluations of machine translation output always
have a comparative methodology, but individual methods vary in what is shown to an evalu-
ator at any given time. The two most widely used methods are:

 Direct assessment (DA): One system is evaluated at any given time. The evaluator is
asked to compare the MT output to either 1) the source or 2) the human reference trans-
lation. These sub-types are called source-based and reference-based DA, respectively.

* Ranking: several systems are evaluated at any given time. The evaluator is asked to sort
system outputs by quality, producing a system ranking.
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Figure 2.11: Screenshot of Appraise, a browser-based tool for human evaluation of machine
translation systems. The figure shows the specific view shown to evaluators for
the interim evaluation.

In recent years most MT evaluations have exclusively used DA methodology (Graham et al.,
2016). Evaluators are shown either the source or the reference translation, and are asked to
rate translation quality on a scale of 1 to 100. See Figure 2.10 for an illustration.

Design for EASIER interim evaluation Translation quality was assessed with source-based
DA (the most ideal form of MT evaluation). We conducted an online study using the tool
Appraise (Federmann, 2018). As suitable user interfaces are important for such evaluations
(Grundkiewicz et al., 2021), the tool was adapted to sign language in many respects.

The tool was extended to support videos as an additional modality of translation inputs or out-
puts and to support evaluator instructions in a sign language. See Figure 2.11 for an example of
the evaluator view of Appraise. This new version of Appraise was developed for the WMT-SLT
shared task on sign language translation carried out by members of EASIER®.

Requirements for human experts Ideally, evaluators for source-based DA are bilingual, and
most proficient in the target language that the MT system produces. In the context of a sign
language evaluation, this often means that individuals are Deaf sign language users for spoken-
to-sign systems (assuming that the signers themselves state having higher proficiency in a sign
language) and hearing sign language users with a spoken language as a first language for sign-
to-spoken systems.

Instructions for evaluators The instructions for evaluators are adapted specifically to sign
language and the new modalities (other than text) involved.

The instructions provide some guidance in the form of discrete quality levels (referred to as
Scalar Quality Metric (SQM) (Freitag et al., 2021)) that partition the continuous scale of 1 to
100. The quality levels range from "0 - No Meaning Preserved” to "6 - Perfect Meaning". See
Figure 2.11 for an example how the quality levels are displayed to the user.

For spoken-to-sign evaluations where the output is a sign language video (or similar), we added
an evaluation criterion specific to sign languages: naturalness of motion. We aim to distinguish

Shttps://www.wmt-slt.com/
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between robotic and human-like, natural motion in system outputs.

Also, following the recent evaluations at the workshop for spoken language machine translation
(IWSLT 2022; Anastasopoulos et al., 2022), we remove any mention of "grammar" from the
descriptions of quality levels. This was done to shift attention away from grammatical issues
in the target language towards translation-breaking differences in meaning. And similar to the
domain of speech, our evaluation material features continuous signing, rather than formalized
signing equivalent to a written text.

The full instructions for spoken-to-sign and sign-to-spoken evaluations are included in Appendix
5. We also translated these instructions to other spoken and signed languages, since Appraise
also supports video instructions.

Extent of the evaluation We evaluate the language pairs DE—DSGS and IT—LIS. For
DE—DSGS, we evaluate two different text-to-gloss components that are based on simple
lemmatization or hand-written rules, respectively (see Section 2.2.4). For IT—LIS we only
evaluate simple lemmatization. For each included system we evaluate 100 sentences, present-
ing them to evaluators in the original order (i.e. taking into account document context). For
each language pair, two evaluators completed our evaluation.

Since the systems output pose sequences, we applied pose estimation to the human references
and also display them as a pose sequence. This is to de-emphasize the difference between
the poses and a real person doing the signing.

2.2.10.2 Outcome of interim evaluation

The results are shown in Tables 2.7 and 2.8. Transforming human reference translations to
pose sequences noticeably reduces the quality scores assigned by evaluators for LIS but not for
DSGS. This indicates that evaluators have different views about the legibility and acceptability
of poses.

Moreover, for DSGS, simple lemmatization appears to perform better than our hand-written,
linguistic rules. One potential explanation is that the hand-written rules, while being precise,
are lacking coverage. However, the outcome should be taken with a grain of salt, as only 100
sentences were evaluated overall, by only two evaluators.

Overall, the general level of translation quality of our spoken-to-signed translation systems is
much higher than for signed-to-spoken systems evaluated previously. For instance, Miller et
al. (2022) conclude that the average translation quality of the best-performing signed-to-spoken
system is 2 out of 100, while the spoken-to-signed systems evaluated here achieved a score
between 10 out of 100 and 20 out of 100.
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Rank Average score System

1 25.914 HUMAN
2 10.223 simplemma

Table 2.7: Average score given by human evaluators in our interim evaluation for IT—LIS. All
systems (including the human translation) are in different quality clusters, as deter-
mined by a Mann-Whitney-U significance test.

Rank Average score System

1 88.759 HUMAN
2 19.657 simplemma
3 14.255 rules

Table 2.8: Average score given by human evaluators in our interim evaluation for DE—DSGS.
All systems (including the human translation) are in different quality clusters, as
determined by a Mann-Whitney-U significance test.
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3 SPOKEN-TO-SPOKEN TRANSLATION (TASK 4.3)

Task 4.3 provides the model to translate between all six of the spoken languages in the EASIER
project (English, French, Italian, German, Dutch and Greek). Furthermore, we conduct exper-
iments to alleviate a form of gender bias in our models with a) data labelled with the gender
of the speaker and b) controlled generation to improve the translation of gender specific terms
relating to the speaker (English-ltalian only).%:’

Parts of the research in this section was published in Lu et al. (2023). The text was adapted to
fit into the context of this deliverable.

3.1 GENDER BIAS

Gender bias in machine translation comprises a number of different issues, the most prominent
are:

1. stereotyping: when certain activities, occupations or professions are associated with gen-
der, e.g. when a model defaults to use a male forms for doctor but female forms for nurse
(Stanovsky et al., 2019)

2. speaker gender: when translating into languages that mark the gender of the speaker
in certain contexts, models tend to default to the more commonly seen gendered forms
(Vanmassenhove et al., 2018)

3. pronoun translation: models tend to have a bias towards the more frequently seen pro-
nouns in training. Additionally, stereotyping, as listed above under 1), can affect pronoun
translation (Loaiciga et al., 2017; Jwalapuram et al., 2020)

For this deliverable, we focus on the second kind of gender bias in the list, where translating
into a language that marks the gender of the speaker openly can lead to gender ambiguity and
potentially wrong translations (e.g. / am happy — Je suis hereux/hereuse.).

3.2 DATA

3.2.1 Europarl with Speaker Information

This dataset consists of European Parliament discussions (Koehn, 2005) annotated with meta
information (Vanmassenhove and Hardmeier, 2018), including the gender of the speaker. This
corpus contains a substantial number of first-person sentences, which makes this type of data
particularly well suited to test gender bias in reference to the speaker.

5Code for fine-tuning the multilingual models: https://github.com/a-rios/ats-models
"Code for the bilingual English-Italian experiments: https://github.com/tianshuailu/debias_FUDGE
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Europarl
sentences M:F ratio ParlaMint (ltalian)
Italian 1.30M 2.07:1 sentences M:F ratio
French 1.44M 2.05:1 .
Greek 0.92M  2.03:1 ]Eﬁtt::e g gg?'gt 2‘?:1
German 1.30M 2.05:1 : i
Dutch 1.42M 2.06:1

Table 3.1: Overview on datasets. Europarl data is parallel with English for all languages.

3.2.2 Italian ParlaMint

We further experiment with controlled generation on the English-Italian direction. For this set
of experiments, in addition to the English-ltalian Europarl data, we need monolingual ltalian
data to train classifiers. In order to keep the domain consistent, we use the ltalian part of
ParlaMint2.1 (Erjavec et al., 2021). We split the full speech segments into sentences to keep
the units consistent with Europarl.

In Italian, adjectives and participles are marked with the gender of the speaker in certain gram-
matical contexts. The full dataset is quite large, and the utterances where the gender of the
speaker is openly marked are relatively sparse. We therefore filter out sentences that do not
contain neither adjectives nor participles, since these cannot be marked for the gender of the
speaker, and thus provide no information to the classifiers. The size of the original and the
filtered data set are shown in Table 3.1.

The ratio of male to female speakers throughout all data sets is roughly 2:1, however, with
the filtered ParlaMint data, we use the same amount of utterances for both genders to ensure
balanced positive and negative class sizes when training classifiers (Lu et al., 2023).

3.3 MODELS

3.3.1 Multilingual Machine Translation with Gender Tags

We fine-tune a multilingual version of LongT5, mLongT5 (Uthus et al., 2023), on the parallel
Europarl data for our experiments. We use mLongT5 instead of mt5 (Xue et al., 2021) since it
trains considerably faster.®

To save memory, we reduce the full vocabulary of >250k items to the 30k most frequent items in
the languages in our data: We use the tokenizer to split all the training data plus 2M sentences
from crawled news corpora and keep the most frequent 30k items as the model’s vocabulary.’

8We use the base configuration of the pretrained model with 12 layers in encoder and decoder.
9The corpora used to create the vocabulary lists are:

+ English, German, French, Italian: news crawl data from WMT’22: https://data.statmt.org/news-crawl/
+ Greek, Dutch: CCaligned corpus data (El-Kishky et al., 2020): https://opus.nlpl.eu/CCAligned.php
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Baseline with Gender Tags

en-el 20.3 21.6
el-en 31.5 32.9
en-it 26.5 27.0
it-en 31.7 32.1
en-fr 32.1 32.6
fr-en 35.4 35.6
en-nl 24.1 245
nl-en 29.8 30.2
en-de 22.9 23.4
de-en 31.1 314

Table 3.2: BLEU scores of multilingual translation with and without gender annotations
(beam=4).

We train a standard multilingual model as baseline where the translation direction is controlled
through an instruction on the source side. '’

We fine-tune a second model with additional gender tags, following work by Vanmassenhove et
al. (2018). Data splits, preprocessing and hyperparameters are identical to the baseline model,
the only difference is a tag (< masc > or < fem >) prefixed to the source text.

Both models are English-centric, i.e. the translation directions seen in training are English-to
and from-English for each of the languages. The models can translate in the unseen directions
as well (zero-shot), but the quality is below the translations from and to English. Unfortunately,
multi-way parallel corpora annotated for speaker gender are not available at this time and we
can therefore not test our models in the zero-shot directions.

3.3.2 Results

Table 3.2 shows that adding gender tags slightly, but consistently, improves BLEU scores across
all translation directions.’" This finding is in accordance with previous publications on this topic
(Vanmassenhove et al., 2018).

In the following sections, we dive deeper into speaker gender issues for one of the translation

directions (English-Italian).

3.4 ENGLISH—ITALIAN TRANSLATION WITH CONTROLLED GEN-
ERATION

We conduct more in-depth experiments on the translation direction English— Italian, this work
was published in Lu et al. (2023).

10" Translate to X:"
"sacrebleu: “nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1*
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3.4.1 FUDGE

Yang and Klein (2021) propose Future Discriminators for Generation (FUDGE), a flexible and
modular way of conditioning a generative model G on a desired attribute o that only requires
access to the output probabilities of trained generation model G.

FUDGE achieves this by training a binary classifier that predicts at each time step ¢ whether the
attribute « will be satisfied in the complete sequence, based on the already generated tokens

Yo — Yt-

A standard auto-regressive model predicts tokens based the previous steps:

n

P(X) = Hp(xi|$1:i—1) (3.1)

i=1

With FUDGE, the prediction is based on an additional feature a:

n

P(X) = HP(%‘!&?M‘—LG) (3.2)

i=1

Which can be formulated as:

P(zj|x1.i-1,a) x Pla|zyi—1)P(xi|z1.4-1) (3.3)

The first term in this equation is modelled by a classifier, whereas for the second term, any auto-
regressive generation model can be used. Finally, the weight of the classifier’s contribution to
the prediction is controlled through a hyperparameter \.

3.4.2 Generation Models G and g,

For our experiments, we train two English—Italian translation models, G and G,. We train both
models on the same sentence pairs, with the exception that G;’s data set includes gender tags
on the English source side, similar to the multilingual experiments described in section 3.3.

We fine-tune mt5 (Xue et al., 2021) on the English—Italian part of the gender annotated Eu-
roparl corpus (Vanmassenhove and Hardmeier, 2018) introduced in section 3.2.1. Similar to the
multilingual experiments in the previous section, we reduce the vocabulary to the 25k most fre-
quent entries in Italian and English. G is mt5 fine-tuned directly on the Europarl data, whereas
G, is mt5 fine-tuned on Europarl data annotated with gender tags. Data splits and preprocess-
ing are identical for G and G;.
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3.4.3 Classifiers B; and 5,,

The attributes we want FUDGE to predict are feminine and masculine gender of the speaker.
We train two classifiers B; and B,, on the monolingual ParlaMint data described in section
3.2.2. Each of these classifiers is then combined with the translation models G and G, resulting
in four combinations, as illustrated in Figure 3.1.

An advantage of FUDGE is the fact that it only needs access to the output logits of the generator
model, meaning G and G; can be directly combined with B; and 3,, without additional fine-
tuning or modification. This allows us to directly use G and G; as baselines (Lu et al., 2023).

G Gy
. D / ~
G+Bf G- Br Gt+Bf Gt + Bu
| standard FUDGE | | tagged FUDGE |
B B,

Figure 3.1: lllustration of four combinations between the underlying translation models G
(translation model trained on original data sets), G, (translation model trained on
tagged data sets) and two classifiers By (feminine), B,, (masculine) (Lu et al.,
2023).

3.4.4 Evaluation

In addition to the standard metric BLEU (Papineni et al., 2002), we evaluate on MuST-SHE v1.2,
a multilingual challenge set that allows for a fine-grained analysis of gender bias in Machine and
Speech Translation (Savoldi et al., 2022). MuST-SHE v1.2 contains 656 first-person sentences
out of 1073 that we use in our evaluation.

For word-level evaluation, MuST-SHE performs a fine-grained qualitative analysis of the sys-
tem’s accuracy in producing the target gender-marked words. MuST-SHE computes the accu-
racy as the proportion of gender-marked words in the references that are correctly translated by
the system. An upper bound of one match for each gender-marked word is applied to prevent
rewarding over-generated terms.

For agreement-level evaluation, MuST-SHE inspects the agreement chain coverage and trans-
lation accuracy. Each agreement chain is composed of several agreement terms. The agree-
ment chain is in coverage only when all the terms appear in the translation (regardless of their
gender forms). Then MuST-SHE further evaluates the accuracy of the in-coverage chains. Ei-
ther the agreement is not respected, i.e. inconsistent (/nc), or it is respected with the correct
gender (Correct) or wrong gender (Wrong).

* XK
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StandardFUDGE (G + B ) TaggedFUDGE (G; + By)
Verbs Nouns  Adj-des Verbs Nouns Adj-des

baseline  27.4 114 354 27.3 13.5 36.3
A=1 43.7 12.8 42.9 39.5 13.2 457
A=2 60.6 13.2 61.2 56.3 20.5 55.1
A=3 62.1 10.8 55.1 63.6 14.3 61.7
A=4 70.1 11.8 61.2 67.1 15.4 64.6
A=5H 71.0 171 61.4 62.9 19.0 66.0

Table 3.3: Open-class POS accuracy on feminine forms of FUDGE By, combined with standard
baseline G and tagged baseline G,.

StandardFUDGE (G + B, ) TaggedFUDGE (G; + B,,,)
Verbs Nouns Adj-des Verbs Nouns Adj-des

baseline  87.8 97.6 94.3 94.4 97.6 94 1
A=1 91.4 96.3 94.4 94.5 97.5 92.2
A= 92.9 97.5 94.2 95.8 97.5 91.7
A= 94.1 97.4 94.1 93.1 97.5 92.2
A=4 96.9 97.5 94 1 97.0 97.3 96.1
A= 96.6 97.5 92.0 95.5 97.5 91.8

Table 3.4: Open-class POS accuracy on masculine forms of FUDGE B,,,, combined with stan-
dard baseline G and tagged baseline G;.

We use a beam size of 4 in all our experiments.

3.4.5 Results

The hyperparameter A determines how much weight is accorded to the classifier over the gen-
eration model’s predictions during inference. We test each model with A ranging from 1 to
5.

Tables 3.3 and 3.4 display the word-level open-class POS accuracy of standard FUDGE and
tagged FUDGE with X ranging from 1 to 5. Adj-des denotes descriptive adjectives.'” As shown
in Table 3.3, for both standard and tagged FUDGE, the accuracy of all three feminine form open-
class words improves with the increase of A\. On the masculine forms on the other hand, the
baselines are already very good and improvements with FUDGE are negligible, see Table 3.4.

Tables 3.5 and 3.6 illustrate the feminine and masculine gender agreement evaluation results
of standard FUDGE and tagged FUDGE with X ranging from 1 to 5. Table 3.5 shows that the
tagged baseline (G;) generates the least inconsistent agreement chains, but combining this
model with FUDGE By can still improve the number of chains with the correct gender. On
the other hand, both baselines are very good at generating correct and consistent agreement
chains for masculine speakers, as shown in Table 3.6, improvements with FUDGE are relatively

2E.g. Sono certo/a che.. - I'm certain that...
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D4.3: Final translation systems (V1.2) ((@)) easier

StandardFUDGE (G + By ) TaggedFUDGE (G; + By)

Correctt Wrongl Nol Correctt Wrongl Incl
baseline 45.5 36.4 18.2 48.6 371 143
A=1 52.8 33.3 139 45.7 343 20.0
A=2 57.9 289 13.2 52.6 31.6 15.8
A=3 52.8 278 194 56.7 27.0 16.2
A=4 571 20.0 229 51.3 324 16.2
A=5 63.6 18.2 18.2 44.7 342 211

Table 3.5: Accuracy on feminine gender agreement chains of FUDGE B¢, combined with stan-
dard baseline G and tagged baseline G,. Wrong=agreement consistent in chain, but
wrong gender, Inc = inconsistent gender in chain.

StandardFUDGE (G + B, ) TaggedFUDGE (G; + B,,,)

Correctt Wrongl Nol Correctt Wrongl| Incl
baseline 91.1 3.6 54 96.2 0.0 3.8
A=1 94.5 1.8 3.6 94.4 1.9 3.7
A=2 94 .4 1.9 3.7 94.2 1.9 3.8
A=3 94.4 1.9 3.7 94.4 1.9 3.7
A=4 96.5 0.0 3.5 96.2 0.0 3.7
A=5 92.3 0.0 7.7 94.7 1.8 3.5

Table 3.6: Accuracy on masculine gender agreement chains of FUDGE B,,, combined with
standard baseline G and tagged baseline G;. Wrong=agreement consistent in chain,
but wrong gender, Inc = inconsistent gender in chain.

small.

Table 3.7 shows the BLEU scores of standard FUDGE and tagged FUDGE with both feminine
and masculine classifiers, i.e. the four models illustrated in Figure 3.1. BLEU scores of both
standard and tagged FUDGE decreases with the increase of A. Since the classifiers were
trained on a relatively small amount of data compared to the generation models, their fluency
and grammaticality is not as good. There is a trade-off between according the classifiers more
weight to correct gender mistakes, but also maintain the fluency and grammaticality of the
mT5 baselines. With higher values for A, the classifier starts to over-correct predictions, for an
example see Table 3.8.
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StandardFUDGE (G + B, ) TaggedFUDGE (G; + B,,)

feminine masculine feminine masculine
baseline 27.2 27.0 27.5 271
A=1 271 27.0 27.3 26.9
A=2 27.0 26.8 27.2 26.9
A=3 26.9 26.7 27.0 26.7
A=4 26.5 26.6 26.6 26.5
A=5 26.2 26.4 26.2 26.5

Table 3.7: BLEU scores of standard FUDGE and tagged FUDGE with both feminine and mas-

culine classifiers.

1)

en
reference
baseline
FUDGE

2)

en
reference
baseline
FUDGE

female speaker:

| am sure you will agree ...

Sono certa che sara d’accordo ...
Sono sicuro che lei concordera ...
Sono sicura che lei concordera ...

female speaker:

The internet is a medium ...
Internet & un mezzo ...
Internet & un medio ...
Internet € un media ...

Table 3.8: Fudge examples: 1) desired correction 2) over-correction resulting in a wrong trans-

lation.
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4 CONCLUSIONS AND FUTURE WORK

This deliverable summarizes the progress made in the EASIER project towards the general
goal of improving sign language machine translation. Much of our research was dedicated
to empirical comparisons between different approaches, some known from literature, some
entirely novel, that have never been compared on a large scale. The best systems are delivered
for use in the EASIER project and for the general public.

For instance, we test a series of signed-to-spoken translation systems, varying the sign lan-
guage representation used to encode the source language. Representations we evaluated
include pose estimation systems, and an array of learned continuous (numerical) or discrete
representations called EMSL. For spoken-to-signed translation, we dedicated much of our at-
tention to comparing different approaches for text-to-pose translation. We also released our
implementations, which are the first open-source implementations that are available and that
could be used as baselines for others.

Furthermore, we deliver models that can translate between all the spoken languages in the
EASIER project (English, Greek, Dutch, Italian, German, French). For one of the language
pairs, English—ltalian, we conduct a more in-depth set of experiments on reducing gender bias
with controlled generation, which improves translation accuracy of the rarer feminine forms
considerably.

Future work in the EASIER project During the remainder of the project, WP4 will be con-
cerned with

» More spoken-to-signed systems: We will develop additional systems for the language
pairs DE—DGS and EN—BSL, using the methods described in Section 2.2.

 Final evaluation: In the following -months a large-scale human evaluation of the EASIER
translation systems will be conducted. In this evaluation we will show to professional
translators the systems that performed best according to automatic quality metrics. The
evaluation covers all five language pairs, in both translation directions.

+ Quality estimation: In the final months of the project WP4 will develop and contribute a
quality estimation system capable of predicting how good an automatic translation is.

More generally, beyond the end of the EASIER project, we believe more research is needed on
creating better benchmark datasets, on developing basic NLP tools such as segmentation, and
automatic metrics for spoken-to-signed translation.
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5 TRANSLATION: INSTRUCTIONS TO HUMAN EVALUATORS

5.1 SIGN-TO-SPOKEN EVALUATION

Below you see a document with 10 sentences in Swiss-German Sign Language (Deutschschweizer
Gebardensprache (DSGS)) (left columns) and their corresponding candidate translations in
German (Deutsch) (right columns). Score each candidate sentence translation in the docu-
ment context. You may revisit already scored sentences and update their scores at any time by
clicking at a source video.

Assess the translation quality on a continuous scale using the quality levels described as fol-
lows:

0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and
source. Grammar is irrelevant. 2: Some Meaning Preserved: The translation preserves some
of the meaning of the source but misses significant parts. The narrative is hard to follow due
to fundamental errors. Grammar may be poor. 4: Most Meaning Preserved and Few Gram-
mar Mistakes: The translation retains most of the meaning of the source. It may have some
grammar mistakes or minor contextual inconsistencies. 6: Perfect Meaning and Grammar: The
meaning of the translation is completely consistent with the source and the surrounding context.
The grammar is also correct.

5.2 SPOKEN-TO-SIGN EVALUATION

Below you see a document with 10 sentences in German (Deutsch) (left columns) and their cor-
responding candidate translations in Swiss-German Sign Language (Deutschschweizer Gebar-
densprache (DSGS)) (right columns). Score each candidate sentence translation in the docu-
ment context. You may revisit already scored sentences and update their scores at any time by
clicking at a source text.

Assess the translation quality on a continuous scale using the quality levels described as fol-
lows:

0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and
source. Naturalness of motion is irrelevant. 2: Some Meaning Preserved: The translation
preserves some of the meaning of the source but misses significant parts. The narrative is
hard to follow due to fundamental errors. Naturalness of motion may be poor. 4: Most Meaning
Preserved and Acceptable Natural Motion: The translation retains most of the meaning of the
source. It may have some minor mistakes or contextual inconsistencies. Motion may appear
unnatural. 6: Perfect Meaning and Naturalness: The meaning of the translation is completely
consistent with the source and the surrounding context. Motion is natural.
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5.3 ADDITIONAL RESULTS FOR SIGNED-TO-SPOKEN EXPERIMENTS

Table 5.1 shows additional scores for the signed-to-spoken translation systems, listing BLEU
scores instead of CHRF.

DSGS—DE LSF—-FR LIS—IT BSL—EN DGS—DE

(pre)trained on  finetuned on

mediapipe parallel - 0.089 0.075 0.015 0.033 -
EMSL v1.0b DGS parallel - 0.394 0.252 0.350 - -
EMSL v1.0b BSL parallel - 0.348 0.241 0.308 0.520 -
mediapipe comparable - 0.215 0.073 0.122 0.187 0.079
EMSL v1.0b DGS comparable - 0.339 0.575 0.163 - 1.841
EMSL v1.0b BSL comparable - 0.556 0.295 0.161 0.436 1.319
mediapipe comparable parallel 0.081 0.032 0.011 0.162 -
EMSL v1.0b DGS comparable parallel 0.231 0.840 0.140 - -
EMSL v1.0b BSL comparable parallel 0.263 0.134 0.147 0.432 -
EMSL v2.0b DGS parallel - 0.210 0.505 0.132 - -
EMSL v2.0b BSL parallel - 0.212 0.523 0.228 0.486 -
EMSL v2.0b BOTH  parallel - 0.226 0.321 0.140 - -
EMSL v2.0b DGS both - 0.613 0.348 0.081 - -
EMSL v2.0b BSL both - 0.285 0.979 0.292 2.888 -
EMSL v2.0b BOTH  both - 0.507 0.911 0.204 - -

Table 5.1: Translation quality measured by BLEU on the EASIER manually corrected test data.
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